Learning of modular structured networks

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observational Learning with Modular Networks

Observational learning algorithm is an ensemble algorithm where each network is initially trained with a bootstrapped data set and virtual data are generated from the ensemble for training. Here we propose a modular OLA approach where the original training set is partitioned into clusters and then each network is instead trained with one of the clusters. Networks are combined with different wei...

متن کامل

Modular neural networks with Hebbian learning rule

The paper consists of two parts, each of them describing a learning neural network with the same modular architecture and with a similar set of functioning algorithms. Both networks are artificially partitioned into several equal modules according to the number of classes that the network has to recognize. Hebbian learning rule is used for network training. In the first network, learning proces...

متن کامل

Modular Neural Networks and Reinforcement Learning

We investigate the effect of modular architecture in an artificial neural network for a reinforcement learning problem. Using the supervised backpropagation algorithm to solve a two-task problem, the network performance can be increased by using networks with modular structures. However, using a modular architecture to solve a two-task reinforcement learning problem will not increase the perfor...

متن کامل

Structured ranking learning using cumulative distribution networks

Ranking is at the heart of many information retrieval applications. Unlike standard regression or classification in which we predict outputs independently, in ranking we are interested in predicting structured outputs so that misranking one object can significantly affect whether we correctly rank the other objects. In practice, the problem of ranking involves a large number of objects to be ra...

متن کامل

Learning to Walk Structured Text Networks

We propose representing a text corpus as a labeled directed graph, where nodes represent words and weighted edges represent the syntactic relations between them, as derived by dependency parsing. Given this graph, we adopt a graph-based similarity measure based on random walks to derive a similarity measure between words, and also use supervised learning to improve the derived similarity measur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Artificial Intelligence

سال: 1995

ISSN: 0004-3702

DOI: 10.1016/0004-3702(94)00061-5